Bases d'entiers dans les extensions cycliques de degré 4 de Q
Si est un corps de nombres, on note son anneau d’entiers ; si est une extension galoisienne finie de corps de nombres de groupe de Galois , on appelle base normale de sur toute base de en tant que -module de la forme avec . On démontre dans ce travail un critère d’existence de base normale d’entiers pour les extensions de Kummer de degré premier, qui permet une construction explicite en cas d’existence ; les principaux outils pour la démonstration sont une formule de Fröhlich pour...
Dans cet article, nous étudions la structure galoisienne des anneaux d’entiers des corps de fonctions cyclotomiques dans le cas modéré. Nous montrons qu’en général, si le corps de base est de genre plus grand que , ces anneaux ne sont pas libres sur les anneaux de groupes considérés.