Page 1

Displaying 1 – 7 of 7

Showing per page

Realizable Galois module classes over the group ring for non abelian extensions

Nigel P. Byott, Bouchaïb Sodaïgui (2013)

Annales de l’institut Fourier

Given an algebraic number field k and a finite group Γ , we write ( O k [ Γ ] ) for the subset of the locally free classgroup Cl ( O k [ Γ ] ) consisting of the classes of rings of integers O N in tame Galois extensions N / k with Gal ( N / k ) Γ . We determine ( O k [ Γ ] ) , and show it is a subgroup of Cl ( O k [ Γ ] ) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ = V C , where V is an elementary abelian group of order p r and C is a cyclic group of order m > 1 acting faithfully on...

Relative Galois module structure of integers of abelian fields

Nigel P. Byott, Günter Lettl (1996)

Journal de théorie des nombres de Bordeaux

Let L / K be an extension of algebraic number fields, where L is abelian over . In this paper we give an explicit description of the associated order 𝒜 L / K of this extension when K is a cyclotomic field, and prove that o L , the ring of integers of L , is then isomorphic to 𝒜 L / K . This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that 𝒜 L / K is the maximal order if L / K is a cyclic and totally wildly ramified extension which is linearly disjoint to ( m ' ) / K , where m ' is the conductor of K .

Remarks on normal bases

Marcin Mazur (2001)

Colloquium Mathematicae

We prove that any Galois extension of a commutative ring with a normal basis and abelian Galois group of odd order has a self-dual normal basis. We apply this result to get a very simple proof of nonexistence of normal bases for certain extensions which are of interest in number theory.

Currently displaying 1 – 7 of 7

Page 1