On a certain subideal of the Stickelberger ideal of a cyclotomic field
We give a necessary condition for a surjective representation Gal to arise from the -torsion of a -curve. We pay a special attention to the case of quadratic -curves.
We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension . We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over , counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian...
Given a number field Galois over the rational field , and a positive integer prime to the class number of , there exists an abelian extension (of exponent ) such that the -torsion subgroup of the Brauer group of is equal to the relative Brauer group of .