Displaying 441 – 460 of 973

Showing per page

Motives over totally real fields and p -adic L -functions

Alexei A. Panchishkin (1994)

Annales de l'institut Fourier

Special values of certain L functions of the type L ( M , s ) are studied where M is a motive over a totally real field F with coefficients in another field T , and L ( M , s ) = 𝔭 L 𝔭 ( M , 𝒩 𝔭 - s ) is an Euler product 𝔭 running through maximal ideals of the maximal order 𝒪 F of F and L 𝔭 ( M , X ) - 1 = ( 1 - α ( 1 ) ( 𝔭 ) X ) · ( 1 - α ( 2 ) ( 𝔭 ) X ) · ... · ( 1 - α ( d ) ( 𝔭 ) X ) = 1 + A 1 ( 𝔭 ) X + ... + A d ( 𝔭 ) X d being a polynomial with coefficients in T . Using the Newton and the Hodge polygons of M one formulate a conjectural criterium for the existence of a p -adic analytic continuation of the special values. This conjecture is verified in a number of cases related to...

Multiplicative Systems on Ultra-Metric Spaces

Memic, Nacima (2010)

Mathematica Balkanica New Series

AMS Subj. Classification: MSC2010: 42C10, 43A50, 43A75We perform analysis of certain aspects of approximation in multiplicative systems that appear as duals of ultrametric structures, e.g. in cases of local fields, totally disconnected Abelian groups satisfying the second axiom of countability or more general ultrametric spaces that do not necessarily possess a group structure. Using the fact that the unit sphere of a local field is a Vilenkin group, we introduce a new concept of differentiation in...

New ramification breaks and additive Galois structure

Nigel P. Byott, G. Griffith Elder (2005)

Journal de Théorie des Nombres de Bordeaux

Which invariants of a Galois p -extension of local number fields L / K (residue field of char p , and Galois group G ) determine the structure of the ideals in L as modules over the group ring p [ G ] , p the p -adic integers? We consider this question within the context of elementary abelian extensions, though we also briefly consider cyclic extensions. For elementary abelian groups G , we propose and study a new group (within the group ring 𝔽 q [ G ] where 𝔽 q is the residue field) and its resulting ramification filtrations....

Normal bases for the space of continuous functions defined on a subset of Zp.

Ann Verdoodt (1994)

Publicacions Matemàtiques

Let K be a non-archimedean valued field which contains Qp and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn|n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq → K) is the Banach space of continuous functions from Vq to K, equipped with the supremum norm. Our aim is to find normal bases (rn(x)) for C(Vq → K), where rn(x) does not have to be a polynomial.

Currently displaying 441 – 460 of 973