Displaying 21 – 40 of 68

Showing per page

Counting points on elliptic curves over finite fields

René Schoof (1995)

Journal de théorie des nombres de Bordeaux

We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial...

Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux

Henri Laville, Brigitte Vallée (1994)

Journal de théorie des nombres de Bordeaux

En utilisant la géométrie du demi-plan de Poincaré et des familles de disques classiques - disques de Ford, disques de Farey - nous décrivons les domaines de niveau associés à la constante d'Hermite et au plus court vecteur d'un réseau. Nous en déduisons une évaluation très précise des fonctions de répartition correspondantes, en particulier au voisinage de l'origine.

Efficient computation of addition chains

F. Bergeron, J. Berstel, S. Brlek (1994)

Journal de théorie des nombres de Bordeaux

The aim of this paper is to present a unifying approach to the computation of short addition chains. Our method is based upon continued fraction expansions. Most of the popular methods for the generation of addition chains, such as the binary method, the factor method, etc..., fit in our framework. However, we present new and better algorithms. We give a general upper bound for the complexity of continued fraction methods, as a function of a chosen strategy, thus the total number of operations required...

Elliptic curves with j-invariant equals 0 or 1728 over a finite prime field.

Carlos Munuera Gómez (1991)

Extracta Mathematicae

Let p be a prime number, p ≠ 2,3 and Fp the finite field with p elements. An elliptic curve E over Fp is a projective nonsingular curve of genus 1 defined over Fp. Each one of these curves has an isomorphic model given by an (Weierstrass) equation E: y2 = x3 + Ax + B, A,B ∈ Fp with D = 4A3 + 27B2 ≠ 0. The j-invariant of E is defined by j(E) = 1728·4A3/D.The aim of this note is to establish some results concerning the cardinality of the group of points on elliptic curves over Fp with j-invariants...

Equivalences between elliptic curves and real quadratic congruence function fields

Andreas Stein (1997)

Journal de théorie des nombres de Bordeaux

In 1994, the well-known Diffie-Hellman key exchange protocol was for the first time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number field. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function fields, whose set of reduced principal ideals has a similar infrastructure. As always, the security...

Factoring and testing primes in small space

Viliam Geffert, Dana Pardubská (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We discuss how much space is sufficient to decide whether a unary given number n is a prime. We show that O(log log n) space is sufficient for a deterministic Turing machine, if it is equipped with an additional pebble movable along the input tape, and also for an alternating machine, if the space restriction applies only to its accepting computation subtrees. In other words, the language is a prime is in pebble–DSPACE(log log n) and also in accept–ASPACE(log log n). Moreover, if the given n is...

Factoring polynomials over global fields

Karim Belabas, Mark van Hoeij, Jürgen Klüners, Allan Steel (2009)

Journal de Théorie des Nombres de Bordeaux

We prove that van Hoeij’s original algorithm to factor univariate polynomials over the rationals runs in polynomial time, as well as natural variants. In particular, our approach also yields polynomial time complexity results for bivariate polynomials over a finite field.

Currently displaying 21 – 40 of 68