Previous Page 20

Displaying 381 – 389 of 389

Showing per page

Ordered fields.

Francis RAYNER (1975/1976)

Seminaire de Théorie des Nombres de Bordeaux

Orderings of monomial ideals

Matthias Aschenbrenner, Wai Yan Pong (2004)

Fundamenta Mathematicae

We study the set of monomial ideals in a polynomial ring as an ordered set, with the ordering given by reverse inclusion. We give a short proof of the fact that every antichain of monomial ideals is finite. Then we investigate ordinal invariants for the complexity of this ordered set. In particular, we give an interpretation of the height function in terms of the Hilbert-Samuel polynomial, and we compute bounds on the maximal order type.

Ordres de Gorenstein

Martine Picavet-L'hermitte (1987)

Annales scientifiques de l'Université de Clermont. Mathématiques

Currently displaying 381 – 389 of 389

Previous Page 20