Displaying 361 – 380 of 389

Showing per page

On torsion Gorenstein injective modules

Okyeon Yi (1998)

Archivum Mathematicum

In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if D is a Gorenstein integral domain and M is a left D -module, then the torsion submodule t G M of Gorenstein injective envelope G M of M is also Gorenstein injective. We can also show that if M is a torsion D -module of a Gorenstein injective integral domain D , then the Gorenstein injective envelope G M of M is torsion.

On wsq-primary ideals

Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional...

On z◦ -ideals in C(X)

F. Azarpanah, O. Karamzadeh, A. Rezai Aliabad (1999)

Fundamenta Mathematicae

An ideal I in a commutative ring R is called a z°-ideal if I consists of zero divisors and for each a ∈ I the intersection of all minimal prime ideals containing a is contained in I. We characterize topological spaces X for which z-ideals and z°-ideals coincide in , or equivalently, the sum of any two ideals consisting entirely of zero divisors consists entirely of zero divisors. Basically disconnected spaces, extremally disconnected and P-spaces are characterized in terms of z°-ideals. Finally,...

One-fibered ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal

Veronique Lierde (2011)

Open Mathematics

Let (R;m) be a 2-dimensional rational singularity with algebraically closed residue field and whose associated graded ring is an integrally closed domain. Göhner has shown that for every prime divisor v of R, there exists a unique one-fibered complete m-primary ideal A v in R with unique Rees valuation v and such that any complete m-primary ideal with unique Rees valuation v, is a power of A v. We show that for v ≠ ordR, A v is the inverse transform of a simple complete ideal in an immediate quadratic...

Order complex of ideals in a commutative ring with identity

Nela Milošević, Zoran Z. Petrović (2015)

Czechoslovak Mathematical Journal

Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when...

Currently displaying 361 – 380 of 389