Displaying 101 – 120 of 557

Showing per page

Combinatoric of syzygies for semigroup algebras.

Emilio Briales, Pilar Pisón, Antonio Campillo, Carlos Marijuán (1998)

Collectanea Mathematica

We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.

Cominimaxness of local cohomology modules

Moharram Aghapournahr (2019)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring, I an ideal of R . Let t 0 be an integer and M an R -module such that Ext R i ( R / I , M ) is minimax for all i t + 1 . We prove that if H I i ( M ) is FD 1 (or weakly Laskerian) for all i < t , then the R -modules H I i ( M ) are I -cominimax for all i < t and Ext R i ( R / I , H I t ( M ) ) is minimax for i = 0 , 1 . Let N be a finitely generated R -module. We prove that Ext R j ( N , H I i ( M ) ) and Tor j R ( N , H I i ( M ) ) are I -cominimax for all i and j whenever M is minimax and H I i ( M ) is FD 1 (or weakly Laskerian) for all i .

Computing limit linear series with infinitesimal methods

Laurent Evain (2007)

Annales de l’institut Fourier

Alexander and Hirschowitz determined the Hilbert function of a generic union of fat points in a projective space when the number of fat points is much bigger than the greatest multiplicity of the fat points. Their method is based on a lemma which determines the limit of a linear system depending on fat points approaching a divisor.Other Hilbert functions were computed previously by Nagata. In connection with his counter-example to Hilbert’s fourteenth problem, Nagata determined the Hilbert function...

Contracting endomorphisms and dualizing complexes

Saeed Nasseh, Sean Sather-Wagstaff (2015)

Czechoslovak Mathematical Journal

We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring R . Our focus is on homological properties of contracting endomorphisms of R , e.g., the Frobenius endomorphism when R contains a field of positive characteristic. For instance, in this case, when R is F -finite and C is a semidualizing R -complex, we prove that the following conditions are equivalent: (i) C is a dualizing R -complex; (ii) C 𝐑 Hom R ( n R , C ) for some n > 0 ; (iii) G C -dim n R < and C is derived 𝐑 Hom R ( n R , C ) -reflexive...

Currently displaying 101 – 120 of 557