Cohomologie différentiable des algèbres de polynômes de leurs localisées ou de leurs complétées, et des variétés
We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.
Let be a commutative Noetherian ring, an ideal of . Let be an integer and an -module such that is minimax for all . We prove that if is (or weakly Laskerian) for all , then the -modules are -cominimax for all and is minimax for . Let be a finitely generated -module. We prove that and are -cominimax for all and whenever is minimax and is (or weakly Laskerian) for all .
Alexander and Hirschowitz determined the Hilbert function of a generic union of fat points in a projective space when the number of fat points is much bigger than the greatest multiplicity of the fat points. Their method is based on a lemma which determines the limit of a linear system depending on fat points approaching a divisor.Other Hilbert functions were computed previously by Nagata. In connection with his counter-example to Hilbert’s fourteenth problem, Nagata determined the Hilbert function...
We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring . Our focus is on homological properties of contracting endomorphisms of , e.g., the Frobenius endomorphism when contains a field of positive characteristic. For instance, in this case, when is -finite and is a semidualizing -complex, we prove that the following conditions are equivalent: (i) is a dualizing -complex; (ii) for some ; (iii) and is derived -reflexive...