Displaying 121 – 140 of 557

Showing per page

Decomposition of finitely generated modules using Fitting ideals

Somayeh Hadjirezaei, Sina Hedayat (2020)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring and M be a finitely generated R -module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of R , in some cases.

Deformation Theory (Lecture Notes)

M. Doubek, Martin Markl, Petr Zima (2007)

Archivum Mathematicum

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last...

Deformations of free and linear free divisors

Michele Torielli (2013)

Annales de l’institut Fourier

We study deformations of free and linear free divisors. We introduce a complex similar to the de Rham complex whose cohomology calculates the deformation spaces. This cohomology turns out to be zero for all reductive linear free divisors and to be constructible for Koszul free divisors and weighted homogeneous free divisors.

Deforming syzygies of liftable modules and generalised Knörrer functors

Runar Ile (2007)

Collectanea Mathematica

Maps between deformation functors of modules are given which generalise the maps induced by the Knörrer functors. These maps become isomorphisms after introducing certain equations in the target functor restricting the Zariski tangent space. Explicit examples are given on how the isomorphisms extend results about deformation theory and classification of MCM modules to higher dimensions.

Currently displaying 121 – 140 of 557