Algebraische Eigenschaften der lokalen Ringe in den Spitzen der Hilbertschen Modulgruppen.
We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
An algorithm is described which computes generators of the kernel of derivations on k[X₁,...,Xₙ] up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.
Let be a local ring, an ideal of and a nonzero Artinian -module of Noetherian dimension with . We determine the annihilator of the top local homology module . In fact, we prove that where denotes the smallest submodule of such that . As a consequence, it follows that for a complete local ring all associated primes of are minimal.
The goal of the article is to develop a theory dual to that of support in the derived category . This is done by introducing ‘big’ and ‘small’ cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between ‘big’ and ‘small’ cosupport and give some comparisons of support and cosupport. Finally, we investigate the...
Let be a complete Noetherian local ring, an ideal of and a nonzero Artinian -module. In this paper it is shown that if is a prime ideal of such that and is not finitely generated and for each the -module is of finite length, then the -module is not of finite length. Using this result, it is shown that for all finitely generated -modules with and for all integers , the -modules are of finite length, if and only if, for all finitely generated -modules with and...
Let be an ideal of Noetherian local ring and a finitely generated -module of dimension . In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to . Also we prove that for an arbitrary local ring (not necessarily complete), we have
Let be a set of ideals of a commutative Noetherian ring . We use the notion of -closure operation which is a semiprime closure operation on submodules of modules to introduce the class of -Laskerian modules. This enables us to investigate the set of associated prime ideals of certain -closed submodules of local cohomology modules.