Displaying 141 – 160 of 169

Showing per page

The catenary degree of Krull monoids I

Alfred Geroldinger, David J. Grynkiewicz, Wolfgang A. Schmid (2011)

Journal de Théorie des Nombres de Bordeaux

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree c ( H ) of H is the smallest integer N with the following property: for each a H and each two factorizations z , z of a , there exist factorizations z = z 0 , ... , z k = z of a such that, for each i [ 1 , k ] , z i arises from z i - 1 by replacing at most N atoms from z i - 1 by at most N new atoms. Under a very mild condition...

Topological characterizations of ordered groups with quasi-divisor theory

Jiří Močkoř (2002)

Czechoslovak Mathematical Journal

For an order embedding G h Γ of a partly ordered group G into an l -group Γ a topology 𝒯 W ^ is introduced on Γ which is defined by a family of valuations W on G . Some density properties of sets h ( G ) , h ( X t ) and ( h ( X t ) { h ( g 1 ) , , h ( g n ) } ) ( X t being t -ideals in G ) in the topological space ( Γ , 𝒯 W ^ ) are then investigated, each of them being equivalent to the statement that h is a strong theory of quasi-divisors.

Un anneau de Prüfer

H. Lombardi (2010)

Actes des rencontres du CIRM

Let E be the ring of integer valued polynomials over . This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of E . In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of E at all prime ideals of E . This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.

When is Z α seminormal or t -closed?

Martine Picavet-L'Hermitte (1999)

Bollettino dell'Unione Matematica Italiana

Sia a un intero algebrico con il polinomio minimale f X . Si danno condizioni necessarie e sufficienti affinché l'anello Z α sia seminormale o t -chiuso per mezzo di f X . Come applicazione, in particolare, si ottiene che se f X = X 3 + a X + b , a , b Z le condizioni sono espresse mediante il discriminante de f X .

Currently displaying 141 – 160 of 169