Finite Polynomial Orbits in Finitely Generated Domains.
Soient le module de Carlitz, un polynôme de et l’ensemble . Nous montrons qu’une fonction entière de type quadratique qui prend des valeurs entières sur , est polynomiale. De plus, la borne est optimale. Ceci est un analogue en caractéristique finie du théorème de Gel’fond-Pólya.
Suppose that is a local domain essentially of finite type over a field of characteristic , and a valuation of the quotient field of which dominates . The rank of such a valuation often increases upon extending the valuation to a valuation dominating , the completion of . When the rank of is , Cutkosky and Ghezzi handle this phenomenon by resolving the prime ideal of infinite value, but give an example showing that when the rank is greater than , there is no natural ideal in that...
The existence of common zero of a family of polynomials has led to the study of inertial forms, whose homogeneous part of degree 0 constitutes the ideal resultant. The Kozsul and Cech cohomologies groups play a fundamental role in this study. An analogueous of Hurwitz theorem is given, and also, one finds a N. H. McCoy theorem in a particular case of this study.
We describe all those commutative Fréchet algebras which may be continuously embedded in the algebra ℂ[[X]] in such a way that they contain the polynomials. It is shown that these algebras (except ℂ[[X]] itself) always satisfy a certain equicontinuity condition due to Loy. Using this result, some applications to the theory of automatic continuity are given; in particular, the uniqueness of the Fréchet algebra topology for such algebras is established.
In this paper, we present a considerable simplification of the proof of a theorem by Gan and Knox, stating a sufficient and necessary condition for existence of a composition of two formal power series. Then, we consider the behavior of such series and their (formal) derivatives at the boundary of the convergence circle, obtaining in particular a theorem of Bugajewski and Gan concerning the structure of the set of points where a formal power series is convergent with all its derivatives.