Porjective Modules over Polynomial Rings.
Let be a field and . Let be a monomial ideal of and be monomials in . We prove that if form a filter-regular sequence on , then is pretty clean if and only if is pretty clean. Also, we show that if form a filter-regular sequence on , then Stanley’s conjecture is true for if and only if it is true for . Finally, we prove that if is a minimal set of generators for which form either a -sequence, proper sequence or strong -sequence (with respect to the reverse lexicographic...
We study 0-dimensional real rank one valuations centered in a regular local ring of dimension n > 2 such that the associated valuation ring can be obtained from the regular ring by a sequence of quadratic transforms. We define two classical invariants associated to the valuation (the refined proximity matrix and the multiplicity sequence) and we show that are equivalent data of the valuation.
The concept of a Prüfer ring is studied in the case of rings with involution such that it coincides with the corresponding notion in the case of commutative rings.