Two Theorems on Higher Dimensional Singularities.
Nous exprimons la multiplicité d’intersection de deux courbes se coupant au point singulier d’une surface normale en termes de valuations. C’est une généralisation du résultat connu pour les surfaces régulières.
We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.