Displaying 361 – 380 of 779

Showing per page

On a question of Demailly-Peternell-Schneider

Meng Chen, Qi Zhang (2013)

Journal of the European Mathematical Society

We give an affirmative answer to an open question posed by Demailly-Peternell-Schneider in 2001 and recently by Peternell. Let f : X Y be a surjective morphism from a log canonical pair ( X , D ) onto a -Gorenstein variety Y . If - ( K X + D ) is nef, we show that K Y is pseudo-effective.

On blowing up versal discriminants

Piotr Jaworski (1998)

Banach Center Publications

It is well-known that the versal deformations of nonsimple singularities depend on moduli. The first step in deeper understanding of this phenomenon is to determine the versal discriminant, which roughly speaking is an obstacle for analytic triviality of an unfolding or deformation along the moduli. The goal of this paper is to describe the versal discriminant of Z k , 0 and Q k , 0 singularities basing on the fact that the deformations of these singularities may be obtained as blowing ups of certain deformations...

On covering and quasi-unsplit families of curves

Laurent Bonavero, Cinzia Casagrande, Stéphane Druel (2007)

Journal of the European Mathematical Society

Given a covering family V of effective 1-cycles on a complex projective variety X , we find conditions allowing one to construct a geometric quotient q : X Y , with q regular on the whole of X , such that every fiber of q is an equivalence class for the equivalence relation naturally defined by V . Among other results, we show that on a normal and -factorial projective variety X with canonical singularities and dim X 4 , every covering and quasi-unsplit family V of rational curves generates a geometric extremal...

On coverings of simple abelian varieties

Olivier Debarre (2006)

Bulletin de la Société Mathématique de France

To any finite covering f : Y X of degree d between smooth complex projective manifolds, one associates a vector bundle E f of rank d - 1 on X whose total space contains Y . It is known that E f is ample when X is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when X is a simple abelian variety and f does not factor through any nontrivial isogeny X ' X . This result is obtained by showing that E f is M -regular in the...

Currently displaying 361 – 380 of 779