Page 1 Next

Displaying 1 – 20 of 21

Showing per page

L 2 extension of adjoint line bundle sections

Dano Kim (2010)

Annales de l’institut Fourier

We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.

Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville

Daniel Greb, Christian Lehn, Sönke Rollenske (2013)

Annales scientifiques de l'École Normale Supérieure

Let  X be a compact hyperkähler manifold containing a complex torus L as a Lagrangian subvariety. Beauville posed the question whether X admits a Lagrangian fibration with fibre L . We show that this is indeed the case if X is not projective. If X is projective we find an almost holomorphic Lagrangian fibration with fibre L under additional assumptions on the pair ( X , L ) , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian...

Limits of log canonical thresholds

Tommaso de Fernex, Mircea Mustață (2009)

Annales scientifiques de l'École Normale Supérieure

Let 𝒯 n denote the set of log canonical thresholds of pairs ( X , Y ) , with X a nonsingular variety of dimension n , and Y a nonempty closed subscheme of X . Using non-standard methods, we show that every limit of a decreasing sequence in 𝒯 n lies in 𝒯 n - 1 , proving in this setting a conjecture of Kollár. We also show that 𝒯 n is closed in 𝐑 ; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check...

Linear bounds for levels of stable rationality

Fedor Bogomolov, Christian Böhning, Hans-Christian Graf von Bothmer (2012)

Open Mathematics

Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.

Linear Fractional Recurrences: Periodicities and Integrability

Eric Bedford, Kyounghee Kim (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Linear fractional recurrences are given as z n + k = A ( z ) / B ( z ) , where A ( z ) and B ( z ) are linear functions of z n , z n + 1 , , z n + k - 1 . In this article we consider two questions about these recurrences: (1) Find A ( z ) and B ( z ) such that the recurrence is periodic; and (2) Find (invariant) integrals in case the induced birational map has quadratic degree growth. We approach these questions by considering the induced birational map and determining its dynamical degree. The first theorem shows that for each k there are k -step linear fractional recurrences...

Local characterization of algebraic manifolds and characterization of components of the set S f

Zbigniew Jelonek (2000)

Annales Polonici Mathematici

We show that every n-dimensional smooth algebraic variety X can be covered by Zariski open subsets U i which are isomorphic to closed smooth hypersurfaces in n + 1 . As an application we show that forevery (pure) n-1-dimensional ℂ-uniruled variety X m there is a generically-finite (even quasi-finite) polynomial mapping f : n m such that X S f . This gives (together with [3]) a full characterization of irreducible components of the set S f for generically-finite polynomial mappings f : n m .

Local embeddings of lines in singular hypersurfaces

Guangfeng Jiang, Dirk Siersma (1999)

Annales de l'institut Fourier

Lines on hypersurfaces with isolated singularities are classified. New normal forms of simple singularities with respect to lines are obtained. Several invariants are introduced.

Local monomialization of transcendental extensions

Steven Dale CUTKOSKY (2005)

Annales de l’institut Fourier

Suppose that R S are regular local rings which are essentially of finite type over a field k of characteristic zero. If V is a valuation ring of the quotient field K of S which dominates S , then we show that there are sequences of monoidal transforms (blow ups of regular primes) R R 1 and S S 1 along V such that R 1 S 1 is a monomial mapping. It follows that a morphism of nonsingular varieties can be made to be a monomial mapping along a valuation, after blow ups of nonsingular subvarieties.

Local volumes of Cartier divisors over normal algebraic varieties

Mihai Fulger (2013)

Annales de l’institut Fourier

In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.

Currently displaying 1 – 20 of 21

Page 1 Next