Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Pluricanonical maps for threefolds of general type

Gueorgui Tomov Todorov (2007)

Annales de l’institut Fourier

In this paper we will prove that for a threefold of general type and large volume the second plurigenera is positive and the fifth canonical map is birational.

Points rationnels et groupes fondamentaux : applications de la cohomologie p -adique

Antoine Chambert-loir (2002/2003)

Séminaire Bourbaki

Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons p , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...

Polynomial cycles in certain local domains

T. Pezda (1994)

Acta Arithmetica

1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x , x , . . . , x k - 1 of distinct elements of R is called a cycle of f if f ( x i ) = x i + 1 for i=0,1,...,k-2 and f ( x k - 1 ) = x . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number 7 7 · 2 N , depending only on the degree N of K. In this note we consider...

Currently displaying 1 – 20 of 29

Page 1 Next