Displaying 21 – 40 of 129

Showing per page

On covering and quasi-unsplit families of curves

Laurent Bonavero, Cinzia Casagrande, Stéphane Druel (2007)

Journal of the European Mathematical Society

Given a covering family V of effective 1-cycles on a complex projective variety X , we find conditions allowing one to construct a geometric quotient q : X Y , with q regular on the whole of X , such that every fiber of q is an equivalence class for the equivalence relation naturally defined by V . Among other results, we show that on a normal and -factorial projective variety X with canonical singularities and dim X 4 , every covering and quasi-unsplit family V of rational curves generates a geometric extremal...

On coverings of simple abelian varieties

Olivier Debarre (2006)

Bulletin de la Société Mathématique de France

To any finite covering f : Y X of degree d between smooth complex projective manifolds, one associates a vector bundle E f of rank d - 1 on X whose total space contains Y . It is known that E f is ample when X is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when X is a simple abelian variety and f does not factor through any nontrivial isogeny X ' X . This result is obtained by showing that E f is M -regular in the...

Currently displaying 21 – 40 of 129