Nef Cotangent Bundles over Line Arrangements.
Let be a field and be the Grassmannian of -dimensional linear subspaces of . A map is called nesting if for every . Glover, Homer and Stong showed that there are no continuous nesting maps except for a few obvious ones. We prove a similar result for algebraic nesting maps , where is an algebraically closed field of arbitrary characteristic. For this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space .
Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.