Stable pairs, linear systems and the Verlinde formula.
L’espace de module des applications stables vers l’espace projectif possède naturellement une structure réelle dont la partie réelle est une variété projective normale. Cette dernière est un espace de module pour les courbes spatiales rationnelles réelles avec des points marqués réels. Puisque le lieu singulier est de codimension au moins deux, une première classe de Stiefel-Whitney est bien définie. Dans cet article nous déterminons un représentant pour la première classe de Stiefel-Whitney dans...
We compute the integer cohomology rings of the “polygon spaces”introduced in [F. Kirwan, Cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906] and [M. Kapovich & J. Millson, the symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, 44 (1996), 479-513]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from the theory...
The paper is devoted to algebraic surfaces which can be obtained using a simple combinatorial procedure called the T-construction. The class of T-surfaces is sufficiently rich: for example, we construct T-surfaces of an arbitrary degree in RP³ which are M-surfaces. We also present a construction of T-surfaces in RP³ with dim H1 (RX; Z/2) > h1, 1(CX), where RX and CX are the real and the complex point sets of the surface.
Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a...
Let be an 5 dimensional closed subscheme of and the largest integer such that is finite dimensional for all on . If we introduce the same integer in the complex case, i.e. when runs through the set of all locally free analytic sheaves on , we show that if .