On deformation of maximally degenerate stable marked curves and Oda's problem.
If a smooth projective variety admits a non-degenerate holomorphic map from the complex plane , then for any finite dimensional linear representation of the fundamental group of the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.
Let be an expanding matrix, a set with elements and define via the set equation . If the two-dimensional Lebesgue measure of is positive we call a self-affine plane tile. In the present paper we are concerned with topological properties of . We show that the fundamental group of is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of . Furthermore, we give a short proof of the fact that the closure of each component of is a locally...
We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.