Finite locally free group schemes in characteristic p and Dieudonné modules.
In our previous work we proved a bound for the , for -units of a function field in characteristic zero. This generalized an analogous bound holding over number fields, proved in [3]. As pointed out by Silverman, the exact analogue does not work for function fields in positive characteristic. In the present work, we investigate possible extensions in that direction; it turns out that under suitable assumptions some of the results still hold. For instance we prove Theorems 2 and 3 below, from...
A simple calculation of the Hasse-Witt matrix is used to give examples of curves which are Kummer coverings of the projective line and which have easily determined p-rank. A family of curve carrying non-classical vector bundles of rank 2 is also given.
We give new arguments that improve the known upper bounds on the maximal number of rational points of a curve of genus over a finite field , for a number of pairs . Given a pair and an integer , we determine the possible zeta functions of genus- curves over with points, and then deduce properties of the curves from their zeta functions. In many cases we can show that a genus- curve over with points must have a low-degree map to another curve over , and often this is enough to...
We give a complete answer to the question of which polynomials occur as the characteristic polynomials of Frobenius for genus- curves over finite fields.