On the Hurwitz scheme and its monodromy
Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...
Let be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply connected Lie group . For any dominant weight consider the curve . The Kanev correspondence defines an abelian subvariety of the Jacobian of . We compute the type of the polarization of the restriction of the canonical principal polarization of to in some cases. In particular, in the case of the group we obtain families of Prym-Tyurin varieties. The main idea is the use of...
Let denote a Galois cover of smooth projective curves with Galois group a Weyl group of a simple Lie group . For a dominant weight , we consider the intermediate curve . One defines a Prym variety and we denote by the restriction of the principal polarization of upon . For two dominant weights and , we construct a correspondence on and calculate the pull-back of by in terms of .
Given a finite -group acting on a smooth projective curve over an algebraically closed field of characteristic , the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of acting on the space of global holomorphic quadratic differentials on . We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when is cyclic or when the action of on is weakly...
Soit un revêtement de la droite projective défini sur , de groupe de monodromie . Soit le compositum des corps de rationalité des points de branchement , et le corps des modules correspondants. Partant du lien entre corps des modules et espaces de Hurwitz, on étudie la géométrie et l’arithmétique de ces espaces et des espaces de configuration de points complétés pour évaluer la ramification dans des mauvaises places de qui ne divisent pas l’ordre de , mais où les points de branchements...