Courbes elliptiques et groupes de classes d'idéaux de certaines corps quadratiques.
Let be an elliptic curve defined over with conductor and denote by the modular parametrization:In this paper, we are concerned with the critical and ramification points of . In particular, we explain how we can obtain a more or less experimental study of these points.
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
We discuss the distribution of Mordell-Weil ranks of the family of elliptic curves y² = (x + αf²)(x + βbg²)(x + γh²) where f,g,h are coprime polynomials that parametrize the projective smooth conic a² + b² = c² and α,β,γ are elements from ℚ̅. In our previous papers we discussed certain special cases of this problem and in this article we complete the picture by proving the general results.