Displaying 41 – 60 of 170

Showing per page

Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques

Fedor Pakovitch (1998)

Annales de l'institut Fourier

Le but de cet article est de proposer une nouvelle méthode pour des études dans le cadre de la théorie des “dessins d’enfants” de A. Grothendieck de certaines questions concernant l’action du groupe de Galois absolu sur l’ensemble des arbres planaires.On définit l’application qui associe à chaque arbre planaire à n arêtes, une courbe hyperelliptique avec un point de n -division. Cette construction permet d’établir un lien entre la théorie de la torsion des courbes hyperelliptiques et celle des “dessins...

Compactification de l’espace des modules des variétés abéliennes principalement polarisées

Michel Brion (2005/2006)

Séminaire Bourbaki

Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé présente...

Compactifications of moduli spaces of (semi)stable bundles on singular curves: two points of view.

Montserrat Teixidor i Bigas (1998)

Collectanea Mathematica

Moduli spaces of vector bundles on families of non-singular curves are usually compactified by considering (slope)semistable bundles on stable curves. Alternatively, one could consider Hilbert-stable curves in Grassmannians. We study some properties of the latter and compare them with similar properties of curves coming from the former compactification. This leads to a new interpretation of the moduli space of (semi)stable torsion-free sheaves on a fixed nodal curve. One can present it as a quotient...

Comparaison de deux notions de rationalité d'un dessin d'enfant

Layla Pharamond dit d'Costa (2001)

Journal de théorie des nombres de Bordeaux

Soit f un revêtement ramifié de 𝐏 1 défini sur 𝐐 ¯ . Lorsqu’on s’intéresse aux propriétés de rationalité de f sur les les corps de nombres, on peut soit exiger que la base soit 𝐏 1 , soit l’autoriser à être une courbe de genre 0 . Nous comparons ces deux points de vue pour les revêtements non ramifiés en dehors de 0 , 1 ,

Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations

Dan Abramovich, Steffen Marcus, Jonathan Wise (2014)

Annales de l’institut Fourier

We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...

Compatibility of the theta correspondence with the Whittaker functors

Vincent Lafforgue, Sergey Lysenko (2011)

Bulletin de la Société Mathématique de France

We prove that the global geometric theta-lifting functor for the dual pair ( H , G ) is compatible with the Whittaker functors, where ( H , G ) is one of the pairs ( S 𝕆 2 n , 𝕊 p 2 n ) , ( 𝕊 p 2 n , S 𝕆 2 n + 2 ) or ( 𝔾 L n , 𝔾 L n + 1 ) . That is, the composition of the theta-lifting functor from H to G with the Whittaker functor for G is isomorphic to the Whittaker functor for H .

Complete arcs arising from a generalization of the Hermitian curve

Herivelto Borges, Beatriz Motta, Fernando Torres (2014)

Acta Arithmetica

We investigate complete arcs of degree greater than two, in projective planes over finite fields, arising from the set of rational points of a generalization of the Hermitian curve. The degree of the arcs is closely related to the number of rational points of a class of Artin-Schreier curves, which is calculated by using exponential sums via Coulter's approach. We also single out some examples of maximal curves.

Currently displaying 41 – 60 of 170