Displaying 1501 – 1520 of 2340

Showing per page

Quasi-homogeneous linear systems on ℙ² with base points of multiplicity 7, 8, 9, 10

Marcin Dumnicki (2011)

Annales Polonici Mathematici

We prove that the Segre-Gimigliano-Harbourne-Hirschowitz conjecture holds for quasi-homogeneous linear systems on ℙ² for m = 7, 8, 9, 10, i.e. systems of curves of a given degree passing through points in general position with multiplicities at least m,...,m,m₀, where m = 7, 8, 9, 10, m₀ is arbitrary.

Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function

Yuji Kodama, Shigeki Matsutani, Emma Previato (2013)

Annales de l’institut Fourier

A lattice model with exponential interaction, was proposed and integrated by M. Toda in the 1960s; it was then extensively studied as one of the completely integrable (differential-difference) equations by algebro-geometric methods, which produced both quasi-periodic solutions in terms of theta functions of hyperelliptic curves and periodic solutions defined on suitable Jacobians by the Lax-pair method. In this work, we revisit Toda’s original approach to give solutions of the Toda lattice in terms...

Quasipositivity and new knot invariants.

Lee Rudolph (1989)

Revista Matemática de la Universidad Complutense de Madrid

This is a survey (including new results) of relations ?some emergent, others established? among three notions which the 1980s saw introduced into knot theory: quasipositivity of a link, the enhanced Milnor number of a fibered link, and the new link polynomials. The Seifert form fails to determine these invariants; perhaps there exists an ?enhanced Seifert form? which does.

Quelques propriétés arithmétiques des points de 3 -division de la jacobienne de y 2 = x 5 - 1

J. Boxall, E. Bavencoffe (1992)

Journal de théorie des nombres de Bordeaux

Soit C la courbe projective lisse et irréductible, définie sur Q , et dont un modèle affine est donné par y 2 = x 5 - 1 . On désigne par l’unique point de C qui n’est pas contenu dans cette partie affine. Soit J la jacobienne de C et soit φ : C 2 J le morphisme associant à chaque couple ( ξ , η ) de points de C la classe du diviseur [ ξ ] + [ η ] - 2 [ ] dans Pic 0 C . Soient u , v , f les trois fonctions rationnelles sur J définies par u φ ( ξ , η ) = x ( ξ ) + x ( η ) , v φ ( ξ , η ) = x ( ξ ) x ( η ) , f = - u + v + 1 Le but de cet article est de montrer que pour tout point P de 3 -division non nul de J , u ( P ) et v ( P ) sont des entiers algébriques...

Ramification dans le corps des modules

Stéphane Flon (2004)

Annales de l’institut Fourier

Soit f un revêtement de la droite projective défini sur ¯ , de groupe de monodromie G . Soit K le compositum des corps de rationalité des points de branchement f , et M le corps des modules correspondants. Partant du lien entre corps des modules et espaces de Hurwitz, on étudie la géométrie et l’arithmétique de ces espaces et des espaces de configuration de points complétés pour évaluer la ramification dans M / K des mauvaises places de f qui ne divisent pas l’ordre de G , mais où les points de branchements...

Currently displaying 1501 – 1520 of 2340