The search session has expired. Please query the service again.
We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.
Working over an algebraically closed field k of any characteristic, we determine the matrix factorizations for the-suitably graded-triangle singularities of domestic type, that is, we assume that (a,b,c) are integers at least two satisfying 1/a + 1/b + 1/c > 1. Using work by Kussin-Lenzing-Meltzer, this is achieved by determining projective covers in the Frobenius category of vector bundles on the weighted projective line of weight type (a,b,c). Equivalently, in a representation-theoretic context,...
Currently displaying 1 –
5 of
5