Page 1

Displaying 1 – 10 of 10

Showing per page

Lieu discriminant d’un germe analytique de corang 1 de , 0 2 vers , 0 2

Philippe Maisonobe (1982)

Annales de l'institut Fourier

On considère des germes d’applications analytiques de C , 0 2 vers C , 0 2 , de corang 1, finis, à lieu critique irréductible. De corang 1 signifie qu’il s’écrit après un bon choix de coordonnées locales sous la forme: ( x , u ) ( x , P ( x , u ) ) P u ' ( 0 , 0 ) = 0 . On donne des conditions nécessaires et suffisantes pour qu’une courbe plane irréductible soit le lieu discriminant d’un tel germe d’applications : ce sont des conditions numériques portant sur les exposants de Puiseux. Ce problème est lié à celui de la représentation d’une variété lagrangienne...

Limit trees and generic discriminants of minimal surface singularities

Eric Akéké (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

According to R. Bondil the dual graph of the minimal resolution of a minimal normal surface singularity determines the generic discriminant of that singularity. In this article we give with combinatorial arguments the link between the limit trees and the generic discriminants of minimal normal surface singularities. The weighted limit trees of a minimal surface singularity determine the generic discriminant of that singularity.

Local embeddings of lines in singular hypersurfaces

Guangfeng Jiang, Dirk Siersma (1999)

Annales de l'institut Fourier

Lines on hypersurfaces with isolated singularities are classified. New normal forms of simple singularities with respect to lines are obtained. Several invariants are introduced.

Localisation formelle et groupe de Picard

Jean Fresnel, Marius Van Der Put (1983)

Annales de l'institut Fourier

Soient X un espace analytique affinoïde réduit sur un corps K complet pour une valeur absolue non archimédienne, r : X X ^ sa réduction canonique et p X ^ un point de la variété algébrique affine X ^ . Ce travail décrit la singularité du point p à l’aide d’objets associés à l’espace X : la localisation formelle 𝒪 X , ( p ) qui est une K -algèbre noethérienne de spectre maximal r - 1 ( p ) et dont la réduction est 𝒪 X ^ , ( p )  ; un complété formel 𝒪 X , ( p ) qui est une K -algèbre noethérienne dont la réduction est 𝒪 X ^ , ( p ) . Les résultats essentiels sont obtenus...

Currently displaying 1 – 10 of 10

Page 1