Some birational maps of Fano 3-folds
We study the evolution of pluri-anticanonical line bundles along the Kähler Ricci flow on a Fano manifold . Under some special conditions, we show that the convergence of this flow is determined by the properties of the pluri-anticanonical divisors of . For example, the Kähler Ricci flow on converges when is a Fano surface satisfying or . Combined with the works in [CW1] and [CW2], this gives a Ricci flow proof of the Calabi conjecture on Fano surfaces with reductive automorphism groups....
For a log Fano manifold (X,D) with D ≠ 0 and of the log Fano pseudoindex ≥2, we prove that the restriction homomorphism Pic(X) → Pic(D 1) of Picard groups is injective for any irreducible component D 1 ⊂ D. The strategy of our proof is to run a certain minimal model program and is similar to Casagrande’s argument. As a corollary, we prove that the Mukai conjecture (resp. the generalized Mukai conjecture) implies the log Mukai conjecture (resp. the log generalized Mukai conjecture).
Let be a Gorenstein, -factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.
In a follow-up to our paper [Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631], we classify smooth complex projective threefolds Xwith −K X big and nef but not ample, Picard number γ(X) = 2, and whose anticanonical map is small. We assume also that the Mori contraction of X and of its flop X + are not both birational.
Let X be a general complete intersection of a given multi-degree in a complex projective space. Suppose that the anti-canonical line bundle of X is ample. Using the cylinder homomorphism associated with the family of complete intersections of a smaller multi-degree contained in X, we prove that the vanishing cycles in the middle homology group of X are represented by topological cycles whose support is contained in a proper Zariski closed subset T of X with certain codimension. In some cases, by...
Une variété horosphérique est une variété algébrique normale dans laquelle un groupe algébrique réductif opère avec une orbite ouverte fibrée en tores sur une variété de drapeaux. En particulier, les variétés toriques et les variétés de drapeaux sont horosphériques. Dans cet article, on classifie les variétés horosphériques de Fano en termes de certains polytopes rationnels qui généralisent les polytopes réflexifs considérés par V. Batyrev. Puis on obtient une majoration du degré des variétés horosphériques...