Polarized abelian varieties and the heat equations
Sia una varietà abeliana e un fibrato in rette ampio di tipo su ; sia l'applicazione associata a . In questo lavoro si dimostra il seguente fatto: se per qualsiasi , non è mai normalmente generato (quindi, se è un embedding, non è proiettivamente normale); negli altri casi invece è normalmente generato per generico nello spazio dei moduli delle varietà abeliane polarizzate di tipo .
Let denote a Galois cover of smooth projective curves with Galois group a Weyl group of a simple Lie group . For a dominant weight , we consider the intermediate curve . One defines a Prym variety and we denote by the restriction of the principal polarization of upon . For two dominant weights and , we construct a correspondence on and calculate the pull-back of by in terms of .
Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field to be a smooth connected -group in which every smooth connected affine normal -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...