Polarized abelian varieties and the heat equations
Gerald E. Welters (1983)
Compositio Mathematica
Bernd Jakob (1994)
Manuscripta mathematica
Pierre Deligne (1983/1984)
Séminaire Bourbaki
S. Ramanan, H. Lange, C. Birkenhake (1993)
Manuscripta mathematica
V. Kanev (1987)
Compositio Mathematica
Nicolas Ratazzi (2004)
Acta Arithmetica
Chad Schoen (1992)
Journal für die reine und angewandte Mathematik
Abdelhamid Khaled (1995)
Journal für die reine und angewandte Mathematik
Elena Rubei (1998)
Bollettino dell'Unione Matematica Italiana
Sia una varietà abeliana e un fibrato in rette ampio di tipo su ; sia l'applicazione associata a . In questo lavoro si dimostra il seguente fatto: se per qualsiasi , non è mai normalmente generato (quindi, se è un embedding, non è proiettivamente normale); negli altri casi invece è normalmente generato per generico nello spazio dei moduli delle varietà abeliane polarizzate di tipo .
Elliot (1882)
Annales scientifiques de l'École Normale Supérieure
Elliot (1882)
Annales scientifiques de l'École Normale Supérieure
Yashonidhi Pandey (2010)
Annales de la faculté des sciences de Toulouse Mathématiques
Let denote a Galois cover of smooth projective curves with Galois group a Weyl group of a simple Lie group . For a dominant weight , we consider the intermediate curve . One defines a Prym variety and we denote by the restriction of the principal polarization of upon . For two dominant weights and , we construct a correspondence on and calculate the pull-back of by in terms of .
Juan-Carlos Naranjo (1992)
Journal für die reine und angewandte Mathematik
Stefanos Pantazis (1985/1986)
Mathematische Annalen
Arnaud Beauville (1977)
Inventiones mathematicae
Lange, Herbert, Recillas, Sevin (2004)
Advances in Geometry
Carel Faber (1988)
Mathematische Zeitschrift
Renata Scognamillo (1995)
Mathematische Annalen
Bert van Geemen, Emma Previato (1992)
Mathematische Annalen
Burt Totaro (2013)
Annales scientifiques de l'École Normale Supérieure
Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field to be a smooth connected -group in which every smooth connected affine normal -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...