Previous Page 3

Displaying 41 – 54 of 54

Showing per page

Correspondances de Hecke, action de Galois et la conjecture d’André–Oort

Rutger Noot (2004/2005)

Séminaire Bourbaki

Soient M une variété de Shimura, Z M fermée et irréductible et S Z ( ) un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, Z est une sous-variété de type Hodge. Par exemple, si M est un espace de modules de variétés abéliennes, S est un ensemble de points correspondant à des variétés de type CM et Z doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev montrent certains...

Critical and ramification points of the modular parametrization of an elliptic curve

Christophe Delaunay (2005)

Journal de Théorie des Nombres de Bordeaux

Let E be an elliptic curve defined over with conductor N and denote by ϕ the modular parametrization: ϕ : X 0 ( N ) E ( ) . In this paper, we are concerned with the critical and ramification points of ϕ . In particular, we explain how we can obtain a more or less experimental study of these points.

Currently displaying 41 – 54 of 54

Previous Page 3