Displaying 21 – 40 of 54

Showing per page

Compactification minimale et mauvaise réduction

Benoît Stroh (2010)

Annales de l’institut Fourier

Nous construisons la compactification minimale de certaines variétés modulaires de Siegel en leurs places de mauvaise réduction. Ces variétés paramètrent des schémas abéliens principalement polarisés munis d’une structure de niveau parahorique en un nombre premier  p et d’une structure de niveau auxilliaire  ; elles ont mauvaise réduction en p . Nous esquissons également une théorie arithmétique des formes modulaires de Siegel associées à ces variétés.

Component groups of abelian varieties and Grothendieck's duality conjecture

Siegfried Bosch (1997)

Annales de l'institut Fourier

We investigate Grothendieck’s pairing on component groups of abelian varieties from the viewpoint of rigid uniformization theory. Under the assumption that the pairing is perfect, we show that the filtrations, as introduced by Lorenzini and in a more general way by Bosch and Xarles, are dual to each other. Furthermore, the methods yield some progress on the perfectness of the pairing itself, in particular, for abelian varieties with potentially multiplicative reduction.

Computing the cardinality of CM elliptic curves using torsion points

François Morain (2007)

Journal de Théorie des Nombres de Bordeaux

Let / ¯ be an elliptic curve having complex multiplication by a given quadratic order of an imaginary quadratic field 𝕂 . The field of definition of is the ring class field Ω of the order. If the prime p splits completely in Ω , then we can reduce modulo one the factors of p and get a curve E defined over 𝔽 p . The trace of the Frobenius of E is known up to sign and we need a fast way to find this sign, in the context of the Elliptic Curve Primality Proving algorithm (ECPP). For this purpose, we propose...

Corestriction of central simple algebras and families of Mumford-type

Federica Galluzzi (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let M be a family of Mumford-type, that is, a family of polarized complex abelian fourfolds as introduced by Mumford in [9]. This family is defined starting from a quaternion algebra A over a real cubic number field and imposing a condition to the corestriction of such A . In this paper, under some extra conditions on the algebra A , we make this condition explicit and in this way we are able to describe the polarization and the complex structures of the fibers. Then, we look at the non simple C M -fibers...

Currently displaying 21 – 40 of 54