Displaying 141 – 160 of 396

Showing per page

Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent Bruasse, Andrei Teleman (2005)

Annales de l’institut Fourier

We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....

Homogeneous polynomials with isomorphic Milnor algebras

Imran Ahmed (2010)

Czechoslovak Mathematical Journal

We recall first Mather's Lemma providing effective necessary and sufficient conditions for a connected submanifold to be contained in an orbit. We show that two homogeneous polynomials having isomorphic Milnor algebras are right-equivalent.

Hyperdéterminant d’un S L 2 -homomorphisme

Jean Vallès (2008)

Annales mathématiques Blaise Pascal

Etant donnés A 1 , , A s ( s 3 ) des S L 2 ( ) -modules non triviaux de dimensions respectives n 1 + 1 n s + 1 (avec n 1 = n 2 + + n s ) et φ ( A 2 A s , A 1 * ) un S L 2 ( ) -homomorphisme, nous montrons que l’hyperdéterminant de φ est nul sauf si les modules A i sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.

Immersions of module varieties

Grzegorz Zwara (1999)

Colloquium Mathematicae

We show that a homomorphism of algebras is a categorical epimorphism if and only if all induced morphisms of the associated module varieties are immersions. This enables us to classify all minimal singularities in the subvarieties of modules from homogeneous standard tubes.

Introduction to actions of algebraic groups

Michel Brion (2010)

Les cours du CIRM

These notes present some fundamental results and examples in the theory of algebraic group actions, with special attention to the topics of geometric invariant theory and of spherical varieties. Their goal is to provide a self-contained introduction to more advanced lectures.

Invariant differential operators on the tangent space of some symmetric spaces

Thierry Levasseur, J. Toby Stafford (1999)

Annales de l'institut Fourier

Let 𝔤 be a complex, semisimple Lie algebra, with an involutive automorphism ϑ and set 𝔨 = Ker ( ϑ - I ) , 𝔭 = Ker ( ϑ + I ) . We consider the differential operators, 𝒟 ( 𝔭 ) K , on 𝔭 that are invariant under the action of the adjoint group K of 𝔨 . Write τ : 𝔨 Der 𝒪 ( 𝔭 ) for the differential of this action. Then we prove, for the class of symmetric pairs ( 𝔤 , 𝔨 ) considered by Sekiguchi, that d 𝒟 ( 𝔭 ) : d 𝒪 ( 𝔭 ) K = 0 = 𝒟 ( 𝔭 ) τ ( 𝔨 ) . An immediate consequence of this equality is the following result of Sekiguchi: Let ( 𝔤 0 , 𝔨 0 ) be a real form of one of these symmetric pairs ( 𝔤 , 𝔨 ) , and suppose that T is a K 0 -invariant...

Currently displaying 141 – 160 of 396