Displaying 361 – 380 of 884

Showing per page

Invariant differential operators on the tangent space of some symmetric spaces

Thierry Levasseur, J. Toby Stafford (1999)

Annales de l'institut Fourier

Let 𝔤 be a complex, semisimple Lie algebra, with an involutive automorphism ϑ and set 𝔨 = Ker ( ϑ - I ) , 𝔭 = Ker ( ϑ + I ) . We consider the differential operators, 𝒟 ( 𝔭 ) K , on 𝔭 that are invariant under the action of the adjoint group K of 𝔨 . Write τ : 𝔨 Der 𝒪 ( 𝔭 ) for the differential of this action. Then we prove, for the class of symmetric pairs ( 𝔤 , 𝔨 ) considered by Sekiguchi, that d 𝒟 ( 𝔭 ) : d 𝒪 ( 𝔭 ) K = 0 = 𝒟 ( 𝔭 ) τ ( 𝔨 ) . An immediate consequence of this equality is the following result of Sekiguchi: Let ( 𝔤 0 , 𝔨 0 ) be a real form of one of these symmetric pairs ( 𝔤 , 𝔨 ) , and suppose that T is a K 0 -invariant...

Invariant meromorphic functions on Stein spaces

Daniel Greb, Christian Miebach (2012)

Annales de l’institut Fourier

In this paper we develop fundamental tools and methods to study meromorphic functions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups. In particular, we show that in this setup invariant meromorphic functions separate orbits in general position. Applications to almost homogeneous spaces and principal orbit types are given. Furthermore, we use the main result...

Invariant subspaces for grasping internal forces and non-interacting force-motion control in robotic manipulation

Paolo Mercorelli (2012)

Kybernetika

This paper presents a parametrization of a feed-forward control based on structures of subspaces for a non-interacting regulation. With advances in technological development, robotics is increasingly being used in many industrial sectors, including medical applications (e. g., micro-manipulation of internal tissues or laparoscopy). Typical problems in robotics and general mechanisms may be mathematically formalized and analyzed, resulting in outcomes so general that it is possible to speak of structural...

Invariants de classes : propriétés fonctorielles et applications à l’étude du noyau

Jean Gillibert (2007)

Journal de Théorie des Nombres de Bordeaux

L’homomorphisme de classes mesure la structure galoisienne de torseurs – sous un schéma en groupes fini et plat – obtenus grâce au cobord d’une suite exacte. Son introduction est due à Martin Taylor (la suite exacte étant une isogénie entre schémas abéliens). Nous commençons par énoncer quelques propriétés générales de cet homomorphisme, puis nous poursuivons son étude dans le cas où la suite exacte est donnée par la multiplication par n sur une extension d’un schéma abélien par un tore.

Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple

Michel Brion (1983)

Annales de l'institut Fourier

Soit G un groupe algébrique semi-simple complexe, U un sous-groupe unipotent maximal de G , T un tore maximal de G normalisant U . Si V est un G -module rationnel de dimension finie, alors G opère sur l’algèbre C [ V ] des fonctions polynomiales sur V ; la structure de G -module de C [ V ] est décrite par la T -algèbre C [ V ] U des U -invariants de C [ V ] . Cette algèbre est de type fini et multigraduée (par le degré de C [ V ] et le poids par rapport à T ). On donne une formule intégrale pour la série de Poincaré de cette algèbre graduée....

Invariants of four subspaces

Gerry W. Schwarz, David L. Wehlau (1998)

Annales de l'institut Fourier

We consider problems in invariant theory related to the classification of four vector subspaces of an n -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.

Currently displaying 361 – 380 of 884