Invariant differential operators and Frobenius decomposition of a -variety. (Invariante Differentialoperatoren und die Frobenius-Zerlegung einer -Varietät.)
Let be a complex, semisimple Lie algebra, with an involutive automorphism and set , . We consider the differential operators, , on that are invariant under the action of the adjoint group of . Write for the differential of this action. Then we prove, for the class of symmetric pairs considered by Sekiguchi, that . An immediate consequence of this equality is the following result of Sekiguchi: Let be a real form of one of these symmetric pairs , and suppose that is a -invariant...
In this paper we develop fundamental tools and methods to study meromorphic functions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups. In particular, we show that in this setup invariant meromorphic functions separate orbits in general position. Applications to almost homogeneous spaces and principal orbit types are given. Furthermore, we use the main result...
This paper presents a parametrization of a feed-forward control based on structures of subspaces for a non-interacting regulation. With advances in technological development, robotics is increasingly being used in many industrial sectors, including medical applications (e. g., micro-manipulation of internal tissues or laparoscopy). Typical problems in robotics and general mechanisms may be mathematically formalized and analyzed, resulting in outcomes so general that it is possible to speak of structural...
L’homomorphisme de classes mesure la structure galoisienne de torseurs – sous un schéma en groupes fini et plat – obtenus grâce au cobord d’une suite exacte. Son introduction est due à Martin Taylor (la suite exacte étant une isogénie entre schémas abéliens). Nous commençons par énoncer quelques propriétés générales de cet homomorphisme, puis nous poursuivons son étude dans le cas où la suite exacte est donnée par la multiplication par sur une extension d’un schéma abélien par un tore.
Soit un groupe algébrique semi-simple complexe, un sous-groupe unipotent maximal de , un tore maximal de normalisant . Si est un -module rationnel de dimension finie, alors opère sur l’algèbre des fonctions polynomiales sur ; la structure de -module de est décrite par la -algèbre des -invariants de . Cette algèbre est de type fini et multigraduée (par le degré de et le poids par rapport à ). On donne une formule intégrale pour la série de Poincaré de cette algèbre graduée....
We consider problems in invariant theory related to the classification of four vector subspaces of an -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.