Displaying 581 – 600 of 884

Showing per page

Properties of subgroups not containing their centralizers

Lemnouar Noui (2009)

Annales mathématiques Blaise Pascal

In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group G to express as semi-direct product of a divisible subgroup D and some subgroup H . We also apply the main Theorem to the p -groups with center of index p 2 , for some prime p . For these groups we compute N c ( G ) the number of conjugacy classes and N a the number of abelian maximal subgroups and N n a the number of nonabelian...

Propriétés (Q) et (C). Variété commutante

Jean-Yves Charbonnel (2004)

Bulletin de la Société Mathématique de France

Soient X une variété algébrique complexe, lisse, irréductible, E et F deux espaces vectoriels complexes de dimension finie et μ un morphisme de X dans l’espace Lin ( E , F ) des applications linéaires de E dans F . Pour x X , on note E ( x ) et x · E le noyau et l’image de μ ( x ) , μ ¯ x le morphisme de X dans Lin ( E ( x ) , F / ( x · E ) ) qui associe à y l’application linéaire v μ ( y ) ( v ) + x · E . Soit i μ la dimension minimale de E ( x ) . On dit que μ ala propriété ( 𝐑 ) en x si i μ ¯ x est inférieur à i μ . Soient F * le dual de F , S ( F ) l’algèbre symétrique de F , μ l’idéal de 𝒪 X S ( F ) engendré par...

Pseudo-abelian varieties

Burt Totaro (2013)

Annales scientifiques de l'École Normale Supérieure

Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field k to be a smooth connected k -group in which every smooth connected affine normal k -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Let k be a field of characteristic p > 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that all level m ...

Quantization of Drinfeld Zastava in type A

Michael Finkelberg, Leonid Rybnikov (2014)

Journal of the European Mathematical Society

Drinfeld Zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of the affine Lie algebra 𝔰𝔩 ^ n . We introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the Zastava space bijectively at the level of complex points. The natural Poisson structure on the Zastava space can be described on Z in terms of Hamiltonian reduction of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra. The quantum Hamiltonian...

Quasi-semi-stable representations

Xavier Caruso, Tong Liu (2009)

Bulletin de la Société Mathématique de France

Fix K a p -adic field and denote by G K its absolute Galois group. Let K be the extension of K obtained by adding p n -th roots of a fixed uniformizer, and G G K its absolute Galois group. In this article, we define a class of p -adic torsion representations of G , calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient...

Quiver varieties and Weyl group actions

George Lusztig (2000)

Annales de l'institut Fourier

The cohomology of Nakajima’s varieties is known to carry a natural Weyl group action. Here this fact is established using the method of intersection cohomology, in analogy with the definition of Springer’s representations.

Quotients of an affine variety by an action of a torus

Olga Chuvashova, Nikolay Pechenkin (2013)

Open Mathematics

Let X be an affine T-variety. We study two different quotients for the action of T on X: the toric Chow quotient X/C T and the toric Hilbert scheme H. We introduce a notion of the main component H 0 of H, which parameterizes general T-orbit closures in X and their flat limits. The main component U 0 of the universal family U over H is a preimage of H 0. We define an analogue of a universal family WX over the main component of X/C T. We show that the toric Chow morphism restricted on the main components...

Quotients of toric varieties by actions of subtori

Joanna Święcicka (1999)

Colloquium Mathematicae

Let X be an algebraic toric variety with respect to an action of an algebraic torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns out that it is enough to consider open S-invariant subsets of X with a good quotient by T. These subsets can be described by subfans of Σ. We give a description of such subfans and also a description of fans corresponding to quotient varieties. Moreover,...

Ramification and moduli spaces of finite flat models

Naoki Imai (2011)

Annales de l’institut Fourier

We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.

Currently displaying 581 – 600 of 884