Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes
Cet article démontre que le cône de la partie impaire d’une super algèbre de Lie basique classique ou étrange défini par les équations est réduit.
We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.
In this article, we prove that a -homology plane with two algebraically independent -actions is isomorphic to either the affine plane or a quotient of an affine hypersurface in the affine -space via a free -action, where is the order of a finite group .
We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.
Two geometric interpretations of the bar automorphism in the positive part of a quantized enveloping algebra are given. The first is in terms of numbers of rational points over finite fields of quiver analogues of orbital varieties; the second is in terms of a duality of constructible functions provided by preprojective varieties of quivers.
A category of Brauer diagrams, analogous to Turaev’s tangle category, is introduced, a presentation of the category is given, and full tensor functors are constructed from this category to the category of tensor representations of the orthogonal group O or the symplectic group Sp over any field of characteristic zero. The first and second fundamental theorems of invariant theory for these classical groups are generalised to the category theoretic setting. The major outcome is that we obtain presentations...