Invariant theory for and the rationality of
In this article, we complete the interpretation of groups of classes of invariant divisors on a complex toric variety X of dimension n in terms of suitable (co-) homology groups. In [BBFK], we proved the following result (see Satz 1 below): Let and denote the groups of classes of invariant Cartier resp. Weil divisors on X. If X is non degenerate (i.e., not equivariantly isomorphic to the product of a toric variety and a torus of positive dimension), then the natural homomorphisms and are...
Let be a split semisimple linear algebraic group over a field and let be a split maximal torus of . Let be an oriented cohomology (algebraic cobordism, connective -theory, Chow groups, Grothendieck’s , etc.) with formal group law . We construct a ring from and the characters of , that we call a formal group ring, and we define a characteristic ring morphism from this formal group ring to where is the variety of Borel subgroups of . Our main result says that when the torsion index...