An embedding theorem for smooth projective toric varieties.
Donaldson proved that if a polarized manifold has constant scalar curvature Kähler metrics in and its automorphism group is discrete, is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case where is not discrete.
A Bochner-Martinelli-Koppelman type integral formula on submanifolds of pseudoconvex domains in Cn is derived; the result gives, in particular, integral formulas on Stein manifolds.
In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of .
Les représentations irréductibles de sont décrites par les foncteurs de Schur, dont la composition définit le pléthysme. Sa compréhension est un problème important en théorie des invariants, ou bien en relation avec les représentations des groupes symétriques.Nous proposons dans cet article une approche géométrique du problème. Généralisant les plongements classiques de Veronese et de Segre, nous construisons des plongements de variétés de drapeaux dans d’autres variétés de drapeaux, sur lesquels...