The theorem of matheer on generic projections in the setting of algebraic geometry.
We give the Thom polynomials for the singularities associated with maps with parameter . Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.
We give a closed formula for the Thom polynomials of the singularities in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.
This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees)...
These lecture notes survey and compare various compactifications of complex hyperplane arrangement complements. In particular, we review the Gelfand-MacPherson construction, Kapranov’s visible contours compactification, and De Concini and Procesi’s wonderful compactification. We explain how these constructions are unified by some ideas from the modern origins of tropical geometry.