On the Complexity of the Projective Classification of Surfaces.
We show that the diffeomorphic type of the complement to a line arrangement in a complex projective plane P 2 depends only on the graph of line intersections if no line in the arrangement contains more than two points in which at least two lines intersect. This result also holds for some special arrangements which do not satisfy this property. However it is not true in general, see [Rybnikov G., On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl., 2011,...
In this paper we generalize Zak’s theorems on tangencies and on linear normality as well as Zak’s definition and classification of Severi varieties. In particular we find sharp lower bounds for the dimension of higher secant varieties of a given variety under suitable regularity assumptions on , and we classify varieties for which the bound is attained.
We study threefolds having as hyperplane section a smooth surface with an elliptic fibration. We first give a general theorem about the possible embeddings of such surfaces with Picard number two. More precise results are then proved for Weierstrass fibrations, both of rank two and higher. In particular we prove that a Weierstrass fibration of rank two that is not a K3 surface is not hyperplane section of a locally complete intersection threefold and we give some conditions, for many embeddings...
We deal with a reducible projective surface with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the -genus of , i.e. the dimension of the vector space of global sections of the dualizing sheaf . Then we prove that, when is smoothable, i.e. when is the central fibre of a flat family parametrized by a disc, with smooth general fibre, then the -genus of the fibres of is constant.
Here we study the gonality of several projective curves which arise in a natural way (e.gċurves with maximal genus in , curves with given degree and genus for all possible , if and with large for arbitrary ).
We prove a recent conjecture of S. Lvovski concerning the periodicity behaviour of top Betti numbers of general finite subsets with large cardinality of an irreducible curve C ⊂ ℙⁿ.
Here we show the existence of strong restrictions for the Hilbert function of zerodimensional curvilinear subschemes of P n with one point as support and with high regularity index.