Displaying 101 – 120 of 561

Showing per page

Counting lines on surfaces

Samuel Boissière, Alessandra Sarti (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

This paper deals with surfaces with many lines. It is well-known that a cubic contains 27 of them and that the maximal number for a quartic is 64 . In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with 352 lines, and give examples of surfaces of degree d containing a sequence of d ( d - 2 ) + 4 skew lines.

Courbes lisses sur les surfaces rationnelles génériques : un lemme d'Horace différentiel

Thierry Mignon (2000)

Annales de l'institut Fourier

Nous démontrons un lemme permettant d’étudier l’irréductibilité et la lissité (hors des singularités prescrites) de la courbe plane générique de degré d passant par r points génériques avec des multiplicités m 1 , ... , m r fixées par avance. Ce lemme repose sur la “méthode d’Horace”, introduite par A. Hirschowitz. Il est appliqué ici à l’étude des courbes de genre inférieur ou égal à 4 .

Curves in P2(C) with 1-dimensional symmetry.

A. A. du Plessis, Charles Terence Clegg Wall (1999)

Revista Matemática Complutense

In a previous paper we showed that the existence of a 1-parameter symmetry group of a hypersurface X in projective space was equivalent to failure of versality of a certain unfolding. Here we study in detail (reduced) plane curves of degree d ≥ 3, excluding the trivial case of cones. We enumerate all possible group actions -these have to be either semisimple or unipotent- for any degree d. A 2-parameter group can only occur if d = 3. Explicit lists of singularities of the corresponding curves are...

Currently displaying 101 – 120 of 561