Displaying 141 – 160 of 561

Showing per page

Elliptic curves on spinor varieties

Nicolas Perrin (2012)

Open Mathematics

We prove irreducibility of the scheme of morphisms, of degree large enough, from a smooth elliptic curve to spinor varieties. We give an explicit bound on the degree.

Enumeration of real conics and maximal configurations

Erwan Brugallé, Nicolas Puignau (2013)

Journal of the European Mathematical Society

We use floor decompositions of tropical curves to prove that any enumerative problem concerning conics passing through projective-linear subspaces in P n is maximal. That is, there exist generic configurations of real linear spaces such that all complex conics passing through these constraints are actually real.

Enumerative geometry of divisorial families of rational curves

Ziv Ran (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We compute the number of irreducible rational curves of given degree with 1 tacnode in 2 or 1 node in 3 meeting an appropriate generic collection of points and lines. As a byproduct, we also compute the number of rational plane curves of degree d passing through 3 d - 2 given points and tangent to a given line. The method is ‘classical’, free of Quantum Cohomology.

Equivalence problem for minimal rational curves with isotrivial varieties of minimal rational tangents

Jun-Muk Hwang (2010)

Annales scientifiques de l'École Normale Supérieure

We formulate the equivalence problem, in the sense of É. Cartan, for families of minimal rational curves on uniruled projective manifolds. An important invariant of this equivalence problem is the variety of minimal rational tangents. We study the case when varieties of minimal rational tangents at general points form an isotrivial family. The main question in this case is for which projective variety Z , a family of minimal rational curves with Z -isotrivial varieties of minimal rational tangents...

Estimates of the number of rational mappings from a fixed variety to varieties of general type

Tanya Bandman, Gerd Dethloff (1997)

Annales de l'institut Fourier

First we find effective bounds for the number of dominant rational maps f : X Y between two fixed smooth projective varieties with ample canonical bundles. The bounds are of the type { A · K X n } { B · K X n } 2 , where n = dim X , K X is the canonical bundle of X and A , B are some constants, depending only on n .Then we show that for any variety X there exist numbers c ( X ) and C ( X ) with the following properties:For any threefold Y of general type the number of dominant rational maps f : X Y is bounded above by c ( X ) .The number of threefolds Y , modulo birational...

Even sets of nodes on sextic surfaces

Fabrizio Catanese, Fabio Tonoli (2007)

Journal of the European Mathematical Society

We determine the possible even sets of nodes on sextic surfaces in 3 , showing in particular that their cardinalities are exactly the numbers in the set { 24 , 32 , 40 , 56 } . We also show that all the possible cases admit an explicit description. The methods that we use are an interplay of coding theory and projective geometry on one hand, and of homological and computer algebra on the other. We give a detailed geometric construction for the new case of an even set of 56 nodes, but the ultimate verification of existence...

Factorization of point configurations, cyclic covers, and conformal blocks

Michele Bolognesi, Noah Giansiracusa (2015)

Journal of the European Mathematical Society

We describe a relation between the invariants of n ordered points in projective d -space and of points contained in a union of two linear subspaces. This yields an attaching map for GIT quotients parameterizing point configurations in these spaces, and we show that it respects the Segre product of the natural GIT polarizations. Associated to a configuration supported on a rational normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT linearization and the rational...

Currently displaying 141 – 160 of 561