Non-uniruledness and the cancellation problem
Using the notion of uniruledness we indicate a class of algebraic varieties which have a stronger version of the cancellation property. Moreover, we give an affirmative solution to the stable equivalence problem for non-uniruled hypersurfaces.
Non-uniruledness and the cancellation problem (II)
We study the following cancellation problem over an algebraically closed field of characteristic zero. Let X, Y be affine varieties such that for some m. Assume that X is non-uniruled at infinity. Does it follow that X ≅ Y? We prove a result implying the affirmative answer in case X is either unirational or an algebraic line bundle. However, the general answer is negative and we give as a counterexample some affine surfaces.
Number of singular points of an annulus in
Using BMY inequality and a Milnor number bound we prove that any algebraic annulus in with no self-intersections can have at most three cuspidal singularities.
On Automorphisms of the Affine Cremona Group
We show that every automorphism of the group of polynomial automorphisms of complex affine -space is inner up to field automorphisms when restricted to the subgroup of tame automorphisms. This generalizes a result of Julie Deserti who proved this in dimension where all automorphisms are tame: . The methods are different, based on arguments from algebraic group actions.
On commuting polynomial automorphisms of C2.
We charocterize the commuting polynomial automorphisms of C2, using their meromorphic extension to P2 and looking at their dynamics on the line at infinity.
On ramification locus of a polynomial mapping
Let X be a smooth algebraic hypersurface in ℂⁿ. There is a proper polynomial mapping F: ℂⁿ → ℂⁿ, such that the set of ramification values of F contains the hypersurface X.
On reconstructing algebraic sets and ideals
We generalize some results on reconstructing sets to the case of ideals of 𝕜[X₁,...,Xₙ]. We show that reconstructing sets can be approximated by finite subsets having the property of reconstructing automorphisms of bounded degree.
On the computation of symbolic powers of some curves in .
On the irreducibility of fibres of complex polynomial mappings.
On the Łojasiewicz Exponent near the Fibre of a Polynomial
The equivalence of the definitions of the Łojasiewicz exponent introduced by Ha and by Chądzyński and Krasiński is proved. Moreover we show that if the above exponents are less than -1 then they are attained at a curve meromorphic at infinity.
On the Łojasiewicz exponent of the gradient of a polynomial function
Let be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.
On the Nagata automorphism.
On the stable equivalence problem for k[x,y]
L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k.
Polynomial Automorphisms Over Finite Fields
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Polynomial automorphisms over finite fields: Mimicking tame maps by the Derksen group
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.If F is a polynomial automorphism over a finite field Fq in dimension n, then it induces a permutation pqr(F) of (Fqr)n for every r О N*. We say that F can be “mimicked” by elements of a certain group of automorphisms G if there are gr О G such that pqr(gr) = pqr(F). Derksen’s theorem in characteristic zero states that the tame automorphisms in dimension n і 3 are generated by the affine maps and the one map (x1+x22, x2,ј, xn). We show...
Quotients jacobiens d'applications polynomiales
Soit où et sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de et la topologie des entrelacs à l’infini des courbes affines et . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.
Retracts that are kernels of locally nilpotent derivations
Let be a field of characteristic zero and a -domain. Let be a retract of being the kernel of a locally nilpotent derivation of . We show that if for some principal ideal (in particular, if is a UFD), then , i.e., is a polynomial algebra over in one variable. It is natural to ask that, if a retract of a -UFD is the kernel of two commuting locally nilpotent derivations of , then does it follow that ? We give a negative answer to this question. The interest in retracts comes...
Sur la structure du groupe d'automorphismes de certaines surfaces affines.
We describe the structure of the group of algebraic automorphisms of the following surfaces 1) P1,k x P1,k minus a diagonal; 2) P1,k x P1,k minus a fiber. The motivation is to get a new proof of two theorems proven respectively by L. Makar-Limanov and H. Nagao. We also discuss the structure of the semi-group of polynomial proper maps from C2 to C2.
Symmetric Jacobians
This article is about polynomial maps with a certain symmetry and/or antisymmetry in their Jacobians, and whether the Jacobian Conjecture is satisfied for such maps, or whether it is sufficient to prove the Jacobian Conjecture for such maps. For instance, we show that it suffices to prove the Jacobian conjecture for polynomial maps x + H over ℂ such that satisfies all symmetries of the square, where H is homogeneous of arbitrary degree d ≥ 3.