Page 1 Next

Displaying 1 – 20 of 56

Showing per page

QF-3 rings.

Claus Michael Ringel, H. Tachikawa (1975)

Journal für die reine und angewandte Mathematik

QTAG torsionfree modules

Ladislav Bican, Blas Torrecillas (1992)

Commentationes Mathematicae Universitatis Carolinae

The structure theory of abelian p -groups does not depend on the properties of the ring of integers, in general. The substantial portion of this theory is based on the fact that a finitely generated p -group is a direct sum of cyclics. Given a hereditary torsion theory on the category R -Mod of unitary left R -modules we can investigate torsionfree modules having the corresponding property for all torsionfree factor-modules (and a natural requirement concerning extensions of some homomorphisms). This...

Quantised 𝔰𝔩 2 -differential algebras

Andrey Krutov, Pavle Pandžić (2024)

Archivum Mathematicum

We propose a definition of a quantised 𝔰𝔩 2 -differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of  𝔰𝔩 2 are natural examples of such algebras.

Quantization of canonical cones of algebraic curves

Benjamin Enriquez, Alexander Odesskii (2002)

Annales de l’institut Fourier

We introduce a quantization of the graded algebra of functions on the canonical cone of an algebraic curve C , based on the theory of formal pseudodifferential operators. When C is a complex curve with Poincaré uniformization, we propose another, equivalent construction, based on the work of Cohen-Manin-Zagier on Rankin-Cohen brackets. We give a presentation of the quantum algebra when C is a rational curve, and discuss the problem of constructing algebraically “differential liftings”.

Quantized semisimple Lie groups

Rita Fioresi, Robert Yuncken (2024)

Archivum Mathematicum

The goal of this expository paper is to give a quick introduction to q -deformations of semisimple Lie groups. We discuss principally the rank one examples of 𝒰 q ( 𝔰𝔩 2 ) , 𝒪 ( SU q ( 2 ) ) , 𝒟 ( SL q ( 2 , ) ) and related algebras. We treat quantized enveloping algebras, representations of 𝒰 q ( 𝔰𝔩 2 ) , generalities on Hopf algebras and quantum groups, * -structures, quantized algebras of functions on q -deformed compact semisimple groups, the Peter-Weyl theorem, * -Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations...

Quantum idempotence, distributivity, and the Yang-Baxter equation

J. D. H. Smith (2016)

Commentationes Mathematicae Universitatis Carolinae

Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.

Quantum sections and Gauge algebras.

Lieven Le Bruyn, Freddy van Oystaeyen (1992)

Publicacions Matemàtiques

Using quantum sections of filtered rings and the associated Rees rings one can lift the scheme structure on Proj of the associated graded ring to the Proj of the Rees ring. The algebras of interest here are positively filtered rings having a non-commutative regular quadratic algebra for the associated graded ring; these are the so-called gauge algebras obtaining their name from special examples appearing in E. Witten's gauge theories. The paper surveys basic definitions and properties but concentrates...

Currently displaying 1 – 20 of 56

Page 1 Next