Page 1 Next

Displaying 1 – 20 of 170

Showing per page

Radical d'une algèbre symétrique à gauche

Jacques Helmstetter (1979)

Annales de l'institut Fourier

L’étude d’une algèbre symétrique à gauche (de dimension finie sur C ) est liée à celle d’un groupe de transformations affines opérant avec trajectoire ouverte et groupe d’isotropie discret sur cette trajectoire. Son radical est défini grâce aux translations conservant cette trajectoire; l’algèbre est nilpotente si ce groupe opère de façon simplement transitive (les multiplications à droite sont alors nilpotentes). Le radical est le plus grand idéal à gauche nilpotent.

Radicals of symmetric cellular algebras

Yanbo Li (2013)

Colloquium Mathematicae

For a symmetric cellular algebra, we study properties of the dual basis of a cellular basis first. Then a nilpotent ideal is constructed. The ideal connects the radicals of cell modules with the radical of the algebra. It also yields some information on the dimensions of simple modules. As a by-product, we obtain some equivalent conditions for a finite-dimensional symmetric cellular algebra to be semisimple.

Radicals which define factorization systems

Barry J. Gardner (1991)

Commentationes Mathematicae Universitatis Carolinae

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.

Rad-supplemented modules

Engin Büyükaşik, Engin Mermut, Salahattin Özdemir (2010)

Rendiconti del Seminario Matematico della Università di Padova

Range inclusion results for derivations on noncommutative Banach algebras

Volker Runde (1993)

Studia Mathematica

Let A be a Banach algebra, and let D : A → A be a (possibly unbounded) derivation. We are interested in two problems concerning the range of D: 1. When does D map into the (Jacobson) radical of A? 2. If [a,Da] = 0 for some a ∈ A, is Da necessarily quasinilpotent? We prove that derivations satisfying certain polynomial identities map into the radical. As an application, we show that if [a,[a,[a,Da]]] lies in the prime radical of A for all a ∈ A, then D maps into the radical. This generalizes a result...

Rank additivity for quasi-tilted algebras of canonical type

Thomas Hübner (1998)

Colloquium Mathematicae

Given the category X of coherent sheaves over a weighted projective line X = X ( λ , p ) (of any representation type), the endomorphism ring Σ = ( 𝒯 ) of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes...

Rank and perimeter preserver of rank-1 matrices over max algebra

Seok-Zun Song, Kyung-Tae Kang (2003)

Discussiones Mathematicae - General Algebra and Applications

For a rank-1 matrix A = a b t over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T(A) = U ⊗ A ⊗ V, or T ( A ) = U A t V with some monomial matrices U and V.

Rational semimodules over the max-plus semiring and geometric approach to discrete event systems

Stéphane Gaubert, Ricardo Katz (2004)

Kybernetika

We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule 𝒮 n over a semiring 𝒮 is rational if it has a generating family that is a rational subset of 𝒮 n , 𝒮 n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules...

Currently displaying 1 – 20 of 170

Page 1 Next