Hochschild homology and cohomology of Generalized Weyl algebras: the quantum case
We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.
We determine the Hochschild homology and cohomology of the generalized Weyl algebras of rank one which are of ‘quantum’ type in all but a few exceptional cases.
This paper is concerned with the construction of local observers for nonlinear systems without inputs, satisfying an observability rank condition. The aim of this study is, first, to define an homogeneous approximation that keeps the observability property unchanged at the origin. This approximation is further used in the synthesis of a local observer which is proven to be locally convergent for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer with the...
We recall first Mather's Lemma providing effective necessary and sufficient conditions for a connected submanifold to be contained in an orbit. We show that two homogeneous polynomials having isomorphic Milnor algebras are right-equivalent.
We give a survey of our recent results on homological properties of Köthe algebras, with an emphasis on biprojectivity, biflatness, and homological dimension. Some new results on the approximate contractibility of Köthe algebras are also presented.
Let be a CM-finite Artin algebra with a Gorenstein-Auslander generator , be a Gorenstein projective -module and . We give an upper bound for the finitistic dimension of in terms of homological data of . Furthermore, if is -Gorenstein for , then we show the global dimension of is less than or equal to plus the -projective dimension of As an application, the global dimension of is less than or equal to .
On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des -algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des -algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin...