Über Ringe, welche dicht in ihrer Modulkategorie sind.
Dans ce travail sont définis les ultraproduits d'anneaux et de modules gradués. L'ultraproduit gradué coïncide dans le case d'une famille Ri[X1, ..., Xn], i ∈ I, d'anneaux de polynômes avec le sousanneau d'éléments génerés dans l'ultraproduit usuel par les familles de polynômes de degré total borné.Nous démonstrons que l'ultraproduit d'une famille de modules gradués libres, qui verifie une condition naturelle de finitude et aussi un module gradué libre (Théorème 2.2). Après un étude de l'arithmétique...
A characterization of locally finite congruence modular varieties with the number of at most k-generated models being bounded from above by a polynomial in k is given. These are exactly the varieties polynomially equivalent to the varieties of unitary modules over a finite ring of finite representation type.
Recently, A. Facchini [3] showed that the classical Krull-Schmidt theorem fails for serial modules of finite Goldie dimension and he proved a weak version of this theorem within this class. In this remark we shall build this theory axiomatically and then we apply the results obtained to a class of some modules that are torsionfree with respect to a given hereditary torsion theory. As a special case we obtain that the weak Krull-Schmidt theorem holds for the class of modules that are both uniform...
Let R be the pullback, in the sense of Levy [J. Algebra 71 (1981)], of two local Dedekind domains. We classify all those indecomposable weak multiplication R-modules M with finite-dimensional top, that is, such that M/Rad(R)M is finite-dimensional over R/Rad(R). We also establish a connection between the weak multiplication modules and the pure-injective modules over such domains.
Given a hereditary torsion theory in Mod-, a module is called -supplemented if every submodule of contains a direct summand of with torsion. A submodule of is called -supplement of in if and and is -weakly supplemented if every submodule...