Displaying 61 – 80 of 106

Showing per page

On some classes of modules

Gonca Güngöroglu, Harmanci, Abdullah (2000)

Czechoslovak Mathematical Journal

The aim of this paper is to investigate quasi-corational, comonoform, copolyform and α -(co)atomic modules. It is proved that for an ordinal α a right R -module M is α -atomic if and only if it is α -coatomic. And it is also shown that an α -atomic module M is quasi-projective if and only if M is quasi-corationally complete. Some other results are developed.

On τ -extending modules

Y. Talebi, R. Mohammadi (2016)

Commentationes Mathematicae Universitatis Carolinae

In this paper we introduce the concept of τ -extending modules by τ -rational submodules and study some properties of such modules. It is shown that the set of all τ -rational left ideals of R R is a Gabriel filter. An R -module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M . It is proved that M is τ -extending if and only if M = R e j M E ( R / τ ( R ) ) N , such that N is a τ -extending submodule of M . An example is given to show that the direct sum of τ -extending modules need not be τ -extending....

Products of small modules

Peter Kálnai, Jan Žemlička (2014)

Commentationes Mathematicae Universitatis Carolinae

Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal.

QTAG torsionfree modules

Ladislav Bican, Blas Torrecillas (1992)

Commentationes Mathematicae Universitatis Carolinae

The structure theory of abelian p -groups does not depend on the properties of the ring of integers, in general. The substantial portion of this theory is based on the fact that a finitely generated p -group is a direct sum of cyclics. Given a hereditary torsion theory on the category R -Mod of unitary left R -modules we can investigate torsionfree modules having the corresponding property for all torsionfree factor-modules (and a natural requirement concerning extensions of some homomorphisms). This...

Relatively exact modules

Ladislav Bican (2003)

Commentationes Mathematicae Universitatis Carolinae

Rim and Teply [10] investigated relatively exact modules in connection with the existence of torsionfree covers. In this note we shall study some properties of the lattice τ ( M ) of submodules of a torsionfree module M consisting of all submodules N of M such that M / N is torsionfree and such that every torsionfree homomorphic image of the relative injective hull of M / N is relatively injective. The results obtained are applied to the study of relatively exact covers of torsionfree modules. As an application...

Representations of a class of positively based algebras

Shiyu Lin, Shilin Yang (2023)

Czechoslovak Mathematical Journal

We investigate the representation theory of the positively based algebra A m , d , which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that A m , d is of finite representative type if d 4 , of tame type if d = 5 , and of wild type if d 6 . In the case when d 4 , all indecomposable representations of A m , d are constructed. Furthermore, their right cell representations as well as left cell representations of A m , d are described.

Rings whose nonsingular right modules are R -projective

Yusuf Alagöz, Sinem Benli, Engin Büyükaşık (2021)

Commentationes Mathematicae Universitatis Carolinae

A right R -module M is called R -projective provided that it is projective relative to the right R -module R R . This paper deals with the rings whose all nonsingular right modules are R -projective. For a right nonsingular ring R , we prove that R R is of finite Goldie rank and all nonsingular right R -modules are R -projective if and only if R is right finitely Σ - C S and flat right R -modules are R -projective. Then, R -projectivity of the class of nonsingular injective right modules is also considered. Over right...

s -pure submodules.

Crivei, Iuliu (2005)

International Journal of Mathematics and Mathematical Sciences

Some characterizations of regular modules.

Goro Azumaya (1990)

Publicacions Matemàtiques

Let M be a left module over a ring R. M is called a Zelmanowitz-regular module if for each x ∈ M there exists a homomorphism F: M → R such that f(x) = x. Let Q be a left R-module and h: Q → M a homomorphism. We call h locally split if for every x ∈ M there exists a homomorphism g: M → Q such that h(g(x)) = x. M is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent:(1) M is Zelmanowitz-regular.(2) every homomorphism into M...

Some results on quasi-t-dual Baer modules

Rachid Tribak, Yahya Talebi, Mehrab Hosseinpour (2023)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and let M be an R -module with S = End R ( M ) . Consider the preradical Z ¯ for the category of right R -modules Mod- R introduced by Y. Talebi and N. Vanaja in 2002 and defined by Z ¯ ( M ) = { U M : M / U is small in its injective hull } . The module M is called quasi-t-dual Baer if ϕ ϕ ( Z ¯ 2 ( M ) ) is a direct summand of M for every two-sided ideal of S , where Z ¯ 2 ( M ) = Z ¯ ( Z ¯ ( M ) ) . In this paper, we show that M is quasi-t-dual Baer if and only if Z ¯ 2 ( M ) is a direct summand of M and Z ¯ 2 ( M ) is a quasi-dual Baer module. It is also shown that any direct summand of a...

Currently displaying 61 – 80 of 106