Displaying 641 – 660 of 1163

Showing per page

On wings of the Auslander-Reiten quivers of selfinjective algebras

Marta Kwiecień, Andrzej Skowroński (2005)

Colloquium Mathematicae

We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.

On μ -singular and μ -extending modules

Yahya Talebi, Ali Reza Moniri Hamzekolaee (2012)

Archivum Mathematicum

Let M be a module and μ be a class of modules in Mod - R which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a μ -essential submodule provided it has a non-zero intersection with any non-zero submodule in μ . We define and investigate μ -singular modules. We also introduce μ -extending and weakly μ -extending modules and mainly study weakly μ -extending modules. We give some characterizations of μ -co-H-rings by weakly μ -extending modules. Let R ...

On τ -extending modules

Y. Talebi, R. Mohammadi (2016)

Commentationes Mathematicae Universitatis Carolinae

In this paper we introduce the concept of τ -extending modules by τ -rational submodules and study some properties of such modules. It is shown that the set of all τ -rational left ideals of R R is a Gabriel filter. An R -module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M . It is proved that M is τ -extending if and only if M = R e j M E ( R / τ ( R ) ) N , such that N is a τ -extending submodule of M . An example is given to show that the direct sum of τ -extending modules need not be τ -extending....

Orbit algebras that are invariant under stable equivalences of Morita type

Zygmunt Pogorzały (2014)

Open Mathematics

In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.

Ordinary selfdistributive rings

Sobhy Ghoneim, Marian Kechlibar, Tomáš Kepka (2005)

Commentationes Mathematicae Universitatis Carolinae

Left selfdistributive rings (i.e., x y z = x y x z ) which are semidirect sums of boolean rings and rings nilpotent of index at most 3 are studied.

P -clean rings.

Chen, Weixing (2006)

International Journal of Mathematics and Mathematical Sciences

Partial flag varieties and preprojective algebras

Christof Geiß, Bernard Leclerc, Jan Schröer (2008)

Annales de l’institut Fourier

Let Λ be a preprojective algebra of type A , D , E , and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ -module, and we introduce a mutation operation between complete rigid modules in Sub Q . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to  G .

Path coalgebras of profinite bound quivers, cotensor coalgebras of bound species and locally nilpotent representations

Daniel Simson (2007)

Colloquium Mathematicae

We prove that the study of the category C-Comod of left comodules over a K-coalgebra C reduces to the study of K-linear representations of a quiver with relations if K is an algebraically closed field, and to the study of K-linear representations of a K-species with relations if K is a perfect field. Given a field K and a quiver Q = (Q₀,Q₁), we show that any subcoalgebra C of the path K-coalgebra K◻Q containing K Q K Q is the path coalgebra K ( Q , ) of a profinite bound quiver (Q,), and the category C-Comod...

Perfect rings for which the converse of Schur's lemma holds.

Abdelfattah Haily, Mostafa Alaoui (2001)

Publicacions Matemàtiques

If M is a simple module over a ring R then, by the Schur's lemma, the endomorphism ring of M is a division ring. However, the converse of this result does not hold in general, even when R is artinian. In this short note, we consider perfect rings for which the converse assertion is true, and we show that these rings are exactly the primary decomposable ones.

Currently displaying 641 – 660 of 1163