On injective modules.
In this paper we extend the concept of an -fuzzy (characteristic) left (resp. right) ideal of a ring to a semiring , and we show that each level left (resp. right) ideal of an -fuzzy left (resp. right) ideal of is characteristic iff is -fuzzy characteristic.
We study some properties of -fuzzy left (right) ideals of a semiring related to level left (right) ideals.
We construct non faithful direct summands of tilting (resp. cotilting) modules large enough to inherit a functorial tilting (resp. cotilting) behaviour.
A module M satisfies the restricted minimum condition if M/N is artinian for every essential submodule N of M. A ring R is called a right RM-ring whenever satisfies the restricted minimum condition as a right module. We give several structural necessary conditions for particular classes of RM-rings. Furthermore, a commutative ring R is proved to be an RM-ring if and only if R/Soc(R) is noetherian and every singular module is semiartinian.
We investigate some properties of -submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an -submodule. Also, we show that if is a finitely generated -module and is a prime ideal of , then has -submodule. Moreover, we define the notion of -submodule, which is a generalization of the notion of -submodule. We find some characterizations of -submodules and we examine the way the aforementioned notions are related to each...
A ring R is said to be left p-injective if, for any principal left ideal I of R, any left R-homomorphism I into R extends to one of R into itself. In this note left nonsingular left p-injective rings are characterized using their maximal left rings of quotients and the structure of semiprime left p-injective rings of bounded index is investigated.